$$E(\text{1-Roll Yahtzee})=\sum_{i=1}^{6}1989i\cdot\left(\cfrac{1}{6}\right)^{5}\approx5.3715$$
$$E(\text{4-of-a-Kind})=\sum_{i=1}^{6}89i\cdot5\cdot5\cdot\left(\cfrac{1}{6}\right)^{5}\approx6.0089$$
$$E(\text{Large Straight})=4\cdot\left(\sum_{i=1}^{5}i+\sum_{j=2}^{6}j\right)\cdot5!\cdot\left(\cfrac{1}{6}\right)^{5}\approx2.1605$$
$$E(\text{Full House})=3\left(\sum_{i=1}^{6}\sum_{j=1}^{6}\left(3i+2j\right)-5\sum_{k=1}^{6}k\right)\cdot^{5}\text{C}_{2}\cdot\left(\cfrac{1}{6}\right)^{5}\approx2.0255$$
$$E(\text{3-of-a-Kind})=\sum_{i=1}^{6}i\cdot5\cdot4\cdot^{5}\text{C}_{2}\cdot\left(\cfrac{1}{6}\right)^{5}\approx0.5401$$
$$E(\text{Small Straight})=\left(\left(\sum_{i=1}^{4}i+\sum_{j=3}^{6}j\right)\left(4\cdot^{5}\text{C}_{2}\cdot3!+5!\right)+\sum_{k=2}^{5}k\cdot\left(4\cdot^{5}\text{C}_{2}\cdot3!\right)\right)\cdot\left(\cfrac{1}{6}\right)^{5}\approx1.7284$$
$$E(\text{Free Yahtzee})=\sum E(\text{Winning Combinations})\approx17.8349 \\ E(\text{Paid Yahtzee})=E(\text{Free Yahtzee})-22\approx-4.1651$$
$$\text{returns}=n(17.8349-c)=n(d-4.1649)$$
| Command | Description |
|---|---|
| !yahtzee number | Executes a specified number of Yahtzees. number is an optional parameter that refers to the number of rolls, defaults to 1. |
$$\text{returns}=n(17.8349-c)=n(d-4.1649)$$
| Term | Definition |
|---|---|
| Free Yahtzee | Yahtzee rolls that do not require credits. |
| Paid Yahtzee | Yahtzee rolls that require credits. |